Extensions séparables, normales et galoisiennes, morphismes d'extensions - TD 6

- 1. Montrer que le polynôme $f(x) = x^3 t^2 t 1 \in \mathbb{F}_3(t)[x]$ n'est pas séparable.
- **2.** Soit F un corps infini. Soient E/F et $a,b \in E$ tels que a est algébrique sur F et b est séparable sur F. Dans ce cas, F(a,b) est une extension simple de F.
- **3.** Soit $f(x) \in \mathbb{F}_p[x]$ un polynôme irréductible de degré n. Si a est une racine de f(x), montrer que $\{a, a^p, a^{p^2}, \dots, a^{p^{n-1}}\}$ est l'ensemble des racines de f(x). En déduire que
 - (a) le corps de décomposition de f(x) est $\mathbb{F}_p(a)$;
 - (b) $\mathbb{F}_p(a) \cong \mathbb{F}_{p^n}$;
 - (c) \mathbb{F}_{p^n} est une extension normale de \mathbb{F}_p ;
 - (d) \mathbb{F}_{p^n} est une extension galoisienne de \mathbb{F}_p .
- **4.** Nous avons déjà vu que \mathbb{F}_4 est le corps de décomposition du polynôme $x^4 x \in \mathbb{F}_2[x]$. Trouver un polynôme irréductible dans $\mathbb{F}_2[x]$ dont le corps de décomposition est isomorphe à \mathbb{F}_4 .
- 5. Montrer que:
 - (a) l'extension $\mathbb{Q}(\sqrt{3}i)/\mathbb{Q}$ est galoisienne.
 - (b) l'extension $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ n'est pas galoisienne.
 - (c) l'extension $\mathbb{Q}(\sqrt[3]{2}, \sqrt{3}i)/\mathbb{Q}$ est galoisienne.
 - (d) l'extension $\mathbb{Q}(\sqrt[3]{2}\sqrt{3}i)/\mathbb{Q}$ est galoisienne.
- 6. Décrire :
 - (a) $\operatorname{Aut}_{\mathbb{Q}}(\mathbb{Q}(\sqrt{3}i))$.
 - (b) $\operatorname{Aut}_{\mathbb{Q}}(\mathbb{Q}(\sqrt[3]{2})).$
 - (c) Aut_{\mathbb{Q}}(\mathbb{Q}(\mathbb{Q}(\sqrt{\sqrt{2}},\sqrt{3}i)).
 - (d) Aut_{\mathbb{Q}}($\mathbb{Q}(\sqrt[3]{2}\sqrt{3}i)$)
- 7. Soit F un corps fini avec $|F|=p^n$ où $p=\operatorname{car} F$. Montrer que $\operatorname{Aut}_{\mathbb{F}_p}(F)$ est un groupe cyclique d'ordre n engendré par l'automorphisme de Frobenius.